Todo comenzó en Egipto el ser humano necesito contar, creo los números, quiso hacer cálculos, y definió las operaciones; hizo relaciones y determino las propiedades numéricas, por medio de lo anterior más el uso de la lógica, obtuvo los instrumentos adecuados para resolver las situaciones problemáticas surgidas a diario. Además de esos requerimientos prácticos, el hombre preciso admirar la belleza de la creación para satisfacer su espíritu. Con ese fin, observo la naturaleza y todo lo que le rodeaba. Así fue ideando conceptos de formas figuras, cuerpos, líneas, los que le dieron origen a la parte de la matemática que designamos como nombre de geometría.
Los babilonios también conocían las áreas delos triángulos y los rectángulos, sobre todo para resolver problemas de herencia, pero en especial ellos estudiaron muchos los círculos.
Eran unos excelentes geometras ellos bautizaron las doce constelaciones del zodíaco, dividiendo cada una de ellas en 30 partes iguales. Es decir, dividieron el círculo zodiacal en 12 x 30 = 360 partes.
Los babilonios conocían las reglas usuales para medir volúmenes y áreas. Medían la circunferencia de un círculo como tres veces el diámetro y el área como un doceavo del cuadrado de la circunferencia, lo cual es correcto para una estimación de π a 3. El volumen de un cilindro se calculaba como el producto de la base por la altura, sin embargo, el volumen de un cono truncado o una pirámide cuadrangular se calculaban incorrectamente como el producto de la altura y la mitad de la suma de las bases. El teorema de Pitágoras también les era conocido. Recientes descubrimientos indican que en una tablilla se usaba π como 3 y 1/8. De los babilonios deriva la milla babilónica, una medida de distancia equivalente a siete millas actuales, aproximadamente. Esta medida de distancia se convirtió en la unidad milla-tiempo, utilizada para medir el recorrido del sol, como una representación del tiempo.
GRANDES MATEMÁTICOS QUE HICIERON APORTES A TRAVÉS DE LA CIRCUNFERENCIA
Arquímedes de Siracusa
Demostró que la circunferencia de un círculo mantiene la misma relación respecto de su diámetro que la superficie del círculo respecto del cuadrado del radio. La relación se denomina hoy en día con el número pi (π). Además calculó la superficie bajo una parábola.
262 a. C. en Perge
190 a. C. en Alejandría
En Κωνικά («Cónicas»), su obra más importante acerca de las secciones de un cono, Apolonio de Perge se dedicó a investigar detenidamente la problemática de las secciones cónicas, determinación de los extremos y de los límites de una sucesión. Entre otros, el círculo de Apolonio se denomina así en su honor. Incluida la circunferencia y el círculo.
ca. 220; ca. 280])
Liu Hui (劉徽) fue un matemático chino. Vivió en el período del reinado Wei y se le conoce por haber escrito una serie acerca de matemáticas para la vida cotidiana. La obra (que consta de nueve libros) se publicó en el año 263.4 5 Entre sus aportes más destacados se cuentan: el cálculo del número π a través de la inscripción de polígonos regulares en un círculo (propuso una aproximación de 3,14); la solución de sistemas de ecuaciones lineales a través de un procedimiento que corresponde buena medida al que más tarde se denomina procedimiento de eliminación de Gaus y el cálculo del volumen del prisma, el tetraedro, la pirámide, el cilindro, el cono y el tronco cónico. También escribió en 263 el Haidao suanjing (Manuel matemático de las islas marinas) que contiene métodos para la medición de terrenos y que se utilizó con este fin durante más de un milenio en el lejano oriente.
476 en Ashmaka
c. 550
Aryabhata fue un sabio, matemático y astrónomo hindú. Se supone que el concepto de 0 (cero) fue conocido por él, aunque fue en trabajos más recientes de Brahmagupta donde el cero se trató como un número independiente. Aryabhata determinó de manera muy precisa, para las condiciones de aquel entonces, el número π (Pi): en 3,1416 y parece haber intuido que se trataba de un número irracional.
(Ghiyath al-Din Jamshid Mas'ud al-Kashi)
c. 1380 en Kashan
22 de junio de 1429 en Samarcanda
En su obra r-Risala al-Muhitija determinó el perímetro de la circunferencia goniométrica (es decir, unitaria, cuyo perímetro es el doble del número π) en base al polígono regular de 3·228 lados, con una precisión de 9 posiciones sexagecimales: 6;16,59,28,01,34,51,46,14,50, las que convirtió a 16 posiciones decimales. Esta es una de las más antiguas documentaciones del cálculo con fracciones decimales. Fue partidario del reemplazo del sistema sexagesimal por el decimal para las operaciones con fracciones. Con el objetivo de predecir más fácilmente la ubicación de los planetas construyó una especie de computador analógico, el Tabaq-al-Manateq, el cual estaba construido de manera semejante a un astrolabio8 . En Francia el teorema del coseno se denomina en su honor Théorème d'Al-Kashi.
Li Ye
1192 en Tahsing, hoy Pekín
1279 en la provincia de Hopeh (Hebei).
Li Ye fue un matemático chino que vivió durante la Dinastía Song. Dejó como legado dos importantes libros acerca de cálculo de la superficie y perímetro del círculo, así como métodos de cálculo para reducir a ecuaciones algebraicas los problemas geométricos. Se reconoce también su aporte a la definición de los números negativos. Su método de solución de ecuaciones se asemeja mucho al enfoque conocido mucho más tarde como algoritmo de Horner.
Adrien-Marie Legendre
18 de septiembre de 1752 en París
10 de enero de 1833 también en París
Adrien-Marie Legendre fue un matemático francés. Trabajó en las integrales elípticas y desarrolló investigaciones acerca de las esferoides elípticas. Independientemente de Carl Friedrich Gauss descubrió en 1806 el método de mínimos cuadrados. Legendre presentó una demostración inmediata de la irracionalidad de π al demostrar que π² es irracional. Entre otros, el polinomio de Legendre lleva su nombre, como asimismo la transformada de Legendre y el símbolo de Legendre para los residuos cuadráticos (o en su defecto, los no-residuos) en la teoría de números.
ELEMENTOS BIBLIOGRÁFICOS
· MORALES, L. (2002). La cuadratura del círculo y otros problemas de Geometría
· GARCÍA, M. (2002). El siglo de la Geometría. http://www.mat.uson.mx/depto/publicaciones/apuntes/pdf/1-2-1-geometria.pdf
http://lacircunferenciacr.blogspot.com.co/2011/10/historia-del-circulo.html
No hay comentarios.:
Publicar un comentario